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Abstract

Do portfolio strategies of climate finance contribute to the decarbonization of the econ-

omy? This study examines climate investment strategies, focusing on Carbon Intensity

(CI) and Implied Temperature Rise (ITR) indicators, as well as Best-in-Universe (BiU)

and Best-in-Class (BiC) strategies. The findings reveal that while these strategies are ef-

fective according the two mentionned climate metrics, they exhibit significant sectoral and

geographical biases. Notably, they reduce investments in emerging markets and essential

sectors like electricity, potentially hindering the global energy transition. The study also

highlights the limitations of current criteria used to assess the climate performance of

portfolios, which can be insufficient or even misleading. Pure exclusion strategies, such as

BiU and BiC, risk delaying the transition if not accompanied by targeted investments in

renewable energy and green bonds.
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1 Introduction

In response to climate regulations and their Environmental, Social, and Governance (ESG)

commitments1, institutional investors are revising their investment allocation and selection

criteria, such as ESG ratings and climate impact materiality indicators. Historically, exclu-

sionary strategies have been popular, involving the removal of assets that do not meet cer-

tain sustainability criteria from the investment universe. In terms of portfolio construction,

this means excluding companies with a high environmental impact, particularly in terms of

greenhouse (GHG) gas emissions. However, the Intergovernmental Panel on Climate Change

(IPCC) highlights the need for investment in the most polluting sectors to transition to a

low-carbon economy. In this context, does the traditional practice of exclusion contradict the

necessary energy transition?

Following the Paris Agreement (2015), the financial industry decided to implement invest-

ment strategies aimed more explicitly at reducing the GHG emissions of the companies in

which it invests. These strategies, referred to as sustainable finance or climate finance strate-

gies, have been the subject of active research by both asset management companies, financial

indices providers and academic researchers. The literature aims notably to address three spe-

cific research questions. First, what metrics should be employed to gauge the carbon efficiency

of investments? Second, how can portfolios be effectively decarbonized? Thirdly, does the

rise of sustainable finance influence the performance of high-GHG emitters and their cost of

capital? These research questions are currently at the forefront of attention for investors, pol-

icymakers, and stakeholders. While the development of climate portfolio strategies appears to

be a rapidly expanding field of literature, the macroeconomic implications and their alignment

with macro-climatic objectives have not, to our knowledge, been extensively researched. This

represents a significant research gap.

Additionally, the world is experiencing demographic aging, which will primarily affect de-

veloped countries. From an intertemporal general equilibrium perspective, a resource transfer

must occur between developed and developing countries to support this aging process. Es-

sentially, developed countries should to invest in emerging markets today to receive a share

of the wealth produced by these countries in the future. Given their industrial structure,

developing countries have a higher carbon intensity of energy, as illustrated by the Environ-

1including the United Nations Principles for Responsible Investment (PRI)
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mental Kuznets Curve in Figure 1. Do exclusion criteria also contradict this necessary wealth

transfer? While both the energy transition and demographic transition are subjects of ac-

tive research, the implications of one on the other and the potential conflicts between these

two transitions appear to have received little attention. This lack of exploration highlights a

significant research gap that warrants further investigation.

Figure 1: Environmental Kuznets Curve

In this paper, we evaluate the impacts of two classic exclusion strategies: Best in Uni-

verse and Best in Class. We demonstrate that both strategies result in under-allocation in

the electricity and energy sectors, where the most virtuous actors are crucial for the energy

transition. Furthermore, these strategies lead to underinvestment in emerging and developing

countries, resulting in a suboptimal equilibrium in the context of demographic aging.

This article is organized as follows. Section 2 presents a review of the literature on portfolio

decarbonization. Section 3 outlines the theoretical framework used to assess the relevance of

Best-in-Class and Best-in-Universe strategies. Section 4 describes the data employed in the

analysis, while Section 5 details our empirical findings. The implications of these results are

discussed in Section 6, and concluding remarks are provided in Section 7.
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2 Literature Review

Our paper is related to the literature developing climate evaluation metrics for investments.

Developments in this area are progressing rapidly, with extra-financial data providers offering

increasingly detailed data. However, the integration of this data into portfolio construction re-

mains imperfect in both operational and academic research. These measures are primarily col-

lected from issuers or estimated by the internal models of ESG data providers, such as MSCI,

Trucost, Sustainalytics, Moody’s Vigeo, and ISS Oekom. Giese et al. (2023) define a tax-

onomy of climate metrics along two axes: climate impact/risk measures and static/dynamic

measures. A climate impact measures reflects the deterioration of the climate linked to the

company, and climate risk measures, which correspond to the probable financial risk the com-

pany could face, notably due to the carbon intensity of its activities, i.e. transition risk. On

the second axis, a static climate metric measures the contribution to global warming or a

transition risk based on the company’s activity at the measurement date. On the other hand,

a dynamic climate metric measures the impact or risk taking into account for the company’s

transformation and adaptation plans.

Le Guenedal et al. (2022) introduces a novel carbon metric, called carbon momentum,

which measures the efforts of an issuer or a sector. To do so, the authors propose estimating

the decarbonization trend using the linear model CE(t) = β0 + β1 · t + ϵ(t). Barahhou

et al. (2022) observes that the model can be analyzed in a logarithmic version ln(CE(t)) =

β0+β1 ·t+ϵ(t). The carbon momentum CM(t) is then the ratio between the current emissions

and the estimated coefficient β̂1, quantifying the decrease in emissions for the issuer.

CM(t) =
CE(t)

ˆβ1(t)

Barahhou et al. also points out that the adoption of the European taxonomy allows

for the definition of green revenue or green capex intensity. However, data remains scarce,

particularly regarding CAPEX, and the taxonomy includes highly heterogeneous activities.

To our knowledge, no published papers have integrated these indicators.

The article by Andersson et al. (2016) pioneered a portfolio decarbonization method,

particularly for developing climate indices. The authors proposed minimizing the tracking

error using a benchmark, subject to an x% reduction in the portfolio’s carbon footprint
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compared to its index. Andersson et al. demonstrated that tracking error can be very low

even with a 50% reduction in carbon footprint. At this date, they considered this a ”free

option” on the price of carbon, as performance remains similar to the benchmark until carbon

costs are accounted for, at which point the index should outperform the market.

The main global index providers, such as MSCI (2022), Standard and Poor’s (2023), and

Bloomberg (2022), publish methodologies for constructing their Paris Aligned Benchmark

(PAB) indices. While these methodologies share similarities due to European regulatory

compliance, notable differences exist. Some methodologies use mathematical optimization

programs, constituting operational research models. For instance, Bloomberg (2022) mini-

mizes the sum of squared deviations of the PAB index weights relative to the parent bench-

mark, whereas MSCI (2022) minimizes the ex-ante tracking error based on component weights

and a covariance matrix. PAB indices, due to carbon intensity targets and exclusion criteria,

often reduce allocations in certain sectors. To mitigate this, European legislation mandates

that PAB indices maintain constant exposure to high carbon intensity sectors relative to the

benchmark. Roncalli and Le Guenedal (2022) have highlighted that the definition of High

Carbon Intensity Sector (”HICS”) is too broad to be effective.

Hodges et al. (2022) embed PAB requirements in a multi-asset portfolio containing de-

veloped and emerging market equities, sovereign bonds, corporate bonds, listed real estate,

and commodities, designed to limit average global temperature increases to 1.5°C. Bolton

et al. (2022) propose a model allowing to align a financial portfolio with a consistent carbon

budget with maintaining temperatures below 1.5°C above the pre-industrial level, with a high

confidence threshold of 86%, as defined by the IPCC (2018). Barahhou et al. (2022) propose

several decarbonization strategies, including different constraints, on stock portfolios and on

bond portfolios. Barahhou et al. test the impact of several levels of immediate decarboniza-

tion on the optimal portfolio, based on the 1600 MSCI World securities, as well as on different

levels of ”carbon momentum”, i.e. by no longer segmenting the securities according to of their

carbon intensity but according to their speed of decarbonization.

Giese et al. (2021) highlights the crucial role of investors in aligning their portfolios with

IPCC (2018) budgets, by reallocating capital away from high-carbon entities, engaging with

industry laggards, investing in climate solutions, and advocating for supportive policies. Giese

et al. (2021) offer three approaches to portfolio construction to help transition to a net-zero
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strategy : tilting the portfolios towards the lowest carbon issuers and periodically rebalancing

the portfolios, ”tilting toward decarbonization leaders” consists of favoring companies that

reduce their emissions the most, particularly on a prospective basis, and mixed strategy. This

paper evaluates the unintended impacts of the first type of strategy and, indirectly, the third

type.

This paper illustrates that traditional metrics for assessing the climate impact of a port-

folio vary significantly between sectors, leading to mechanical penalization of some sectors

and favoring others. Geographic disparities between emerging and developed countries are

also significant, with emerging countries being penalized despite their relatively low histor-

ical contribution to global warming. This approach appears inconsistent from an economic

equilibrium perspective, as it leads to underfinancing essential sectors like energy.

Current research and regulations add constraints to optimization programs at aggregated

sectoral levels. Our alternative approach proposes a new method for aggregating climate met-

rics to discourage portfolio allocation effects that reduce investment in high carbon intensity

sectors necessary for the transition. Unlike weighted averages, this method penalizes portfo-

lios that do not invest in sectors crucial for the transition, such as utilities, materials, oil &

gas, and industrials.

Traditional methods for aggregating carbon metrics at the portfolio level are typically

weighted averages. Adding constraints for sector-neutral portfolios penalizes the carbon per-

formance of a portfolio. An unconstrained and optimized portfolio (PNCOPT ) generally

performs better than a constrained and optimized portfolio (PCOPT ), based on climate met-

rics. It is also common for an unoptimized and unconstrained portfolio to outperform an

optimized constrained portfolio (PC
OPT ) in terms of carbon performance.

We introduce two new metrics: CI∗ 2 to avoid underweighting crucial decarbonizing sec-

tors, and ITR∗ 3 to penalize portfolios that underinvest in energy-intensive sectors or emerg-

ing countries. Additionally, we test two non-optimized but robust ESG indexing strategies:

Best-in-class and Best in Universe. We evaluate their climate performance relative to various

metrics and their exposure to essential economic sectors, complementing the work of Jondeau

et al. (2021). Finally, we perform statistical tests to measure reductions in sector exposures,

adding to the literature on the impact of portfolio strategies on asset prices and the cost of

2derived from carbon intensity
3derived from Implied Temperature Rise
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capital.

3 Theory

3.1 Capitalization weighted strategy

The Capitalization weighted (”cap-weighted” or CW thereafter) strategy is the standard

benchmark in the portfolio construction literature supported by the CAPM (Sharpe (1964);

Lintner (1965); Mossin (1966)) and the Efficient Market Hypothesis (Fama (1970)). Indeed,

weights defined by the market capitalization replicate the market for an investor, as if she

invests in the overall market proportionally to her wealth. To define the cap-weighted port-

folio as weighting portfolio construction strategy for which the market capitalization for each

security i MC(i) is divided by the aggregate capitalization of the market
∑J

j=1MC(j).

wcap
i =

MCi∑J
j=1MCj

3.2 Best-in-Universe strategies

The Best-in-Universe (BiU) strategy prioritizes investments with the lowest carbon emissions,

evaluated based on their Carbon Emissions to EVIC intensity (CI). The carbon intensity

metric is presented in detail in Appendix B. Companies with lower CI or those actively

reducing it are preferred, focusing on minimizing GHG emissions and mitigating climate

change. This approach is consistent with the first strategy proposed by Giese et al. (2021).

To do so, the strategy exclude several securities, for which the carbon footprint, denoted

CIi is above a given threshold C̄I. The market capitalization is reduced to 0 if CIi ≥ C̄I.

Otherwise, the capitalization is maintained.

MCBIC
i =

 MCi if CIi < C̄I

0 else

The threshold C̄I is generally defined as a quantile of the empirical distribution:

P
(
CI(t) ≤ C̄I

)
= α
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The weight of the remaining securities is then proportional to their capitalization in the

total capitalization of the remaining stocks.

wBIU
i =

MCBIU
i∑J

j=1MCBIU
j

3.3 Best-in-Class strategies

A Best-in-Class (BiC) strategy involves selecting the top securities within each sector or region

based on a specific climate criterion, such as the scope 1-2 carbon footprint. By evaluating

securities relative to their sector rather than the entire investment universe, a BiC strategy is

likely to have a lower sector bias compared to a Best-in-Universe (BiU) strategy. For a BiC

strategy based on carbon intensity (CIi), descriptive statistics are calculated by sector, with

the median (α = 0.5) used as the selection level in this study.

P
(
CI(t) ≤ CISi

)
= α ∀s ∈ S

This approach is consistent with the second strategy proposed by Giese et al. (2021).

As a consequence, 50% of issuers from each sector have been removed from the BiC sample

when their metric CIi is higher than the median for their sector C̄I
S
i . Mathematically, this

corresponds to the definition of the following Boolean variable.

SBIC
i =

 1 if CIi ≤ C̄I
S
i

0 else

The market capitalization is reduced to 0 if CIi > C̄I
S
i . Otherwise, the capitalization is

maintained.

MCBIC
i =

 MCi if CIi ≤ C̄I
S
i

0 else

Or:

MCBIC
i = MCi · SBIC

i

The weight of the remaining securities is then proportional to their capitalization in the
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total capitalization of the remaining values.

wBIC
i =

MCBIC
i∑J

j=1MCBIC
j

=
SBIC
i ·MCi∑J

j=1 S
BIC
j ·MCj

3.4 Modified WACI and Modified ITR

We provide a new aggregation formula for assessing the climate quality of an investment

portfolio. Currently, it is a weighted average, such as the Weighted Average Carbon Intensity

to EVIC (WACI), defined as:

WACI =

∑n
i=1(wi · CIi)
EVIC

This aggregation formula penalizes certain essential sectors (e.g., utilities, electricity) and

countries (emerging markets). To address these issues, PAB indices add constraints, but this

can result in less favorable climate performance compared to funds practicing pure exclusion.

Therefore, we propose an indicator that ensures better climate performance for an index

maintaining sector-neutral exposures than a fund practicing exclusion, all else being equal.

To evaluate investment strategies, a modified WACI indicator, denoted WACI∗P , is pro-

posed. It is calculated as the classic WACI of the portfolio WACIP minus the allocation

effect AEP :

WACI∗P = WACIP −AEP = wT
S,P · CIS,P + [wS,P − wS,B]

T · CIS,B

With :

• wS,P is the vector of the weights of each sector s in the portfolio P,

• wS,B is the vector of the weights of each sector s in the benchmark B

• CIS,P is the vector of weighted average carbon intensity of sector s in the portfolio P

• CIS,B is the vector of weighted average carbon intensity of sector s in the benchmark

Similarly, the Modified Implied Temperature Rise ITR∗
P takes into account the allocation

effect by reintegrating the emissions projections and the carbon budget of the sectors in which

the investor is under-allocated.
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ITR∗
P = 2%+

wT
S,P · ES,P + [wS,B − wS,P ]

T · ES,B

wT
S,P ·BS,P + [wS,B − wS,P ]

T ·BS,B

× TCRE ×GB

Where:

• ES,P is the vector of weighted average emissions projections of companies in sector s in

the portfolio P

• ES,B is the vector of weighted average emissions projections of companies in sector s in

the benchmark B

• BS,P is the vector of the weighted average carbon budgets of companies in sector s in

the portfolio P

• BS,B is the vector of the weighted average carbon budgets of companies in sector s in

the benchmark B.

3.5 Investors preferences

The key point is that this new aggregation method penalizes portfolios that do not invest

in sectors that need to organize the transition, notably in scope 1 (utilities and electricity

sectors). As a consequence, this aggregation method can be used directly in a Utility function

U taking into account both a given risk profile σ, reward profile µ and carbon intensity CI

of a given portfolio.

Let’s assume that an investor has to choose between the four following portfolios the

following portfolio as follows:

• an risk-reward optimized sector-neutral portfolio P SN
OPT

• a non-optimized sector-neutral portfolio P SN
NO

• an optimized portfolio without sector constraints PCF
OPT

• a low carbon intensity non-optimized non-sector-neutral portfolio (typically a Best-in-

Universe portfolio) PCF
NO

Let’s also assume that:
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• The risk-return profile of an optimized portfolio is superior to that of a non-optimized

portfolio. Then:

µ

σ

(
P SN
OPT

)
>

µ

σ

(
P SN
NO

)
And:

µ

σ

(
PCF
OPT

)
>

µ

σ

(
PCF
NO

)
• The risk-return profile of a sector-neutral portfolio is inferior to that of an unconstrained

portfolio due to the reduction in the feasible set. Then:

µ

σ

(
P SN
OPT

)
<

µ

σ

(
PCF
OPT

)
And:

µ

σ

(
P SN
NO

)
<

µ

σ

(
PCF
NO

)
• The WACI of a sector-neutral portfolio is higher than that of an unconstrained portfolio.

Then:

WACI(P SN
OPT) ≡ WACI(P SN

NO) > WACI(PCF
OPT) ≡ WACI(PCF

NO)

• The modified WACI of a sector-neutral portfolio is lower than that of an unconstrained

portfolio.

WACI∗(P SN
OPT) ≡ WACI∗(P SN

OPT) < WACI∗(PCF
OPT) ≡ WACI∗(PCF

NO)

Finally, let us assume that an investor’s portfolio choice is defined by utility function

U containing three criteria: return, risk, and carbon intensity. The utility function is an

increasing function of return ∂U
∂µ > 0 and a decreasing function of risk ∂U

∂σ < 0 and carbon

intensity ∂CI
∂σ < 0.

If the utility function is defined using the WACI, then :

U
(
PCF
OPT

)
> U

(
P SN
OPT

)
And:

U
(
PCF
NO

)
> U

(
P SN
NO

)
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And for an investor sufficiently averse to the carbon footprint of their portfolio, we even

have:

U
(
PCF
NO

)
> U

(
P SN
OPT

)
This leads to the following pre-order:

U
(
PCF
OPT

)
> U

(
PCF
NO

)
> U

(
P SN
OPT

)
> U

(
P SN
NO

)
This results in a preference for portfolios that do not invest in carbon-intensive sectors

but make efforts towards decarbonization. Conversely, using the modified WACI, the investor

prefers :

U
(
P SN
OPT

)
> U

(
PCF
OPT

)
And:

U
(
P SN
NO

)
> U

(
PCF
NO

)
Therefore, we obtain the following preference order:

U
(
P SN
OPT

)
> U

(
P SN
NO

)
> U

(
PCF
OPT

)
> U

(
PCF
NO

)
Using a modified WACI in the utility function prioritizes portfolios that are decarbonizing

while maintaining sector neutrality, thereby effectively financing the entire energy transition

in line with IEA recommendations.

3.6 Hypothesis Testing

The empirical study of carbon strategies leads to testing the following hypotheses.

Hypothesis 1: The BiU decarbonization strategy performs significantly better

than the BiC decarbonization strategy both in terms of Carbon Emissions to

EVIC intensity and ITR.

The BiC and BiU strategies can be understood as non-random sampling of a population

that would be the MSCI ACWI. Consequently, the validation test of hypothesis H1 amounts

to carrying out a hypothesis test on the average carbon intensity of the strategy’s securities

against that of the population. The statistical test commonly employed to compare two
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empirical means is the Student’s t-test.

Hypothesis 2: The BiU decarbonization performance is more driven by allo-

cation effects than the BiC decarbonization performance.

The study compares the BiU and BiC strategies, which are non-random samples from

the initial population, by testing the empirical means of these samples using the Student’s t-

test. This test determines if the means of two independent samples differ significantly. Initial

tests suggest that the BiU strategy generally shows better climate performance than the BiC

strategy, but this does not guarantee a lower carbon footprint for BiU.

To validate this, a resampling method (bootstrap) is used, generating 2000 random samples

of 300 securities each. The BiU and BiC strategies are applied to these samples to calculate

variables like carbon intensity, ITR, and sector weights. This bootstrap method allows for

hypothesis testing on the strategy parameters, reducing sampling error.

If the resampled parameters follow a normal distribution, standard tests are used; other-

wise, critical values are adjusted. This approach is useful when traditional statistical assump-

tions are violated or sample sizes are small.

Hypothesis 3: BiU and BiC strategies significantly reduce investors’ exposure

to the electricity sector compared to an equivalent market portfolio.

To test this hypothesis, a two empirical frequencies Z-test is performed. To use these test,

sufficiently large sample sizes are necessary to ensure that the normal distribution is a fair

approximation of the empirical one.

Hypothesis 4: BiU strategy has lower exposure to the electricity sector than

BiC strategy.

Hypothesis 5: BiU and BiC strategies significantly reduce investors’ exposure

to emerging markets

In hypotheses 4 and 5, the objective is to compare the weight of the electricity sector or

emerging countries between two samples of the population, the BiU and BiC samples.

4 Data
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4.1 Universe

The current study utilizes a dataset from MSCI Inc., encompassing all companies within

the MSCI All Countries World Index (MSCI ACWI). This dataset includes both static and

dynamic metrics of climate impact and risk, as well as financial indicators such as market

capitalization and enterprise value including cash (EVIC).

To ensure data quality, observations missing essential carbon metrics were systematically

removed from the dataset. This data curation was crucial to maintain the integrity and

reliability of the analyses. By excluding incomplete data, potential biases and inaccuracies

were mitigated. Only 4% of the data was removed, minimally impacting the dataset’s integrity

while ensuring the reliability of the analyses. The table 1 describes this data cleaning process4.

Step Obs. % init.

1 Total dataset 8968 100.00

2 GHG/EVIC unavailable removed 8644 96.39

3 ITR unavailable removed 8596 95.85

4 GHG projections unavailable removed 8593 95.82

5 GHG budget removed 8593 95.82

Table 1: Data cleaning process
Source: MSCI, author’s calculations

Table 2 provides an overview of the dataset by geographic regions, revealing an over-

representation of developed countries, especially North America, which accounts for 53% of the

total market capitalization. In contrast, Africa and Latin America are underrepresented, with

market caps of 0.3% and 1.3%, respectively. This imbalance may introduce biases in analyses

and interpretations, highlighting the need to improve data collection from underrepresented

regions to enhance inclusivity and comprehensiveness in research and policymaking.

Table 3 provides an overview of market capitalization across various industrial sectors. The

manufacturing sector is prominently represented due to its diverse sub-sectors. Technology

and finance sectors also show significant representation, reflecting their importance in the

4Such stringent data filtering practices are needed to robust empirical research. While this deletion in-
evitably resulted in a reduction in sample size, the preservation of data integrity and the maintenance of
analytical rigor take precedence, safeguarding the credibility and validity of research outcomes.
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Region n Market Cap (bn USD) Weight (%)

1 Africa 80 345.29 0.31

2 Developed Asia / Pacific 2045 12,030.92 10.84

3 Emerging Asia 2121 18,984.13 17.10

4 Europe 1455 18,996.10 17.11

5 Latin America 198 1,457.32 1.31

6 North America 2474 59,206.48 53.33

Table 2: Market Cap of the sample by region
Source: MSCI, author’s calculations

equity market. In contrast, the agriculture sector is underrepresented. This imbalance may

introduce biases, affecting the generalizability of findings and requiring careful consideration

in analyses.

Sector n Market Cap (bn USD) Weight (%)

1 Basic materials 1026 7,227.68 6.51

2 Communications 525 9,392.19 8.46

3 Consumer cyclical 1325 15,199.06 13.69

4 Consumer non-cyclical 336 4,040.39 3.64

5 Energy 264 6169.46 5.56

6 Financial 1112 18,723.57 16.87

7 Healthcare 431 6,866.63 6.19

8 Industrial 1670 13,657.52 12.30

9 Real estate 453 2,460.55 2.22

10 Technology 948 24,044.10 21.66

11 Utilities 283 3,239.08 2.92

Table 3: Market Cap of the sample by sector (GICS classification)
Source: MSCI, author’s calculations

4.2 Carbon Intensity by sector

An analysis of Carbon Intensity to EVIC (CI) statistics across sectors reveals notable vari-

ations in GHG emissions in the dataset. Given the limited availability of data for Scope 3,
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we have focused on Scopes 1 and 2. Figure 2 and Table 8 in the appendix present descrip-

tive statistics for each GICS sector (level 1) and highlight significant disparities in carbon

emissions intensity across sectors.

Remarkably, the average carbon footprints of three specific sectors (Energy, Materials, and

Utilities) markedly exceed those of others from both the median and the average perspectives.

The energy and utilities sectors are particularly polluting, as are basic materials, primarily due

to sub-sectors like steel and cement. This observation underscores the significance of targeted

interventions and policies aimed at mitigating emissions within these sectors. Integrating

Scope 3 carbon emissions would alter the sector rankings, particularly for materials, utilities,

and industrials. However, the electricity sub-sector within Utilities remains one of the most

polluting. Conversely, some sectors, such as financials, telecommunications, healthcare, and

technology, exhibit low pollution levels. These substantial intersectoral disparities can lead

to biases in exclusion policies based on this criterion.

Figure 2: Carbon intensity (Scope 1-2) by sector as of 12/31/2024
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4.3 Carbon Intensity contribution by sectors

Figure 3 and Table 9 in appendix present the contribution of carbon emissions by sector to

the index carbon footprint, classified according to the Global Industry Classification Stan-

dard (GICS). It reveals that certain sectors, such as basic materials, energy, and utilities,

have a disproportionately high contribution to carbon emissions relative to their weight. For

instance, the basic materials sector, with a weight of 6.51%, contributes 30.40% of the total

emissions, while the energy sector, with a weight of 5.56%, contributes 21.02% of the emis-

sions. Conversely, sectors like communications and financials, despite their significant weight

(8.46% and 16.87% respectively), have a much lower contribution to carbon emissions (0.71%

and 1.39%).

Figure 3 and Table 9 indicates that portfolio managers aiming to improve their carbon

footprint, as measured by the Weighted Average Carbon Intensity (WACI), may be inclined

to reduce the allocation of certain sectors within their portfolios. However, this strategy might

be reconsidered if sectoral emissions are concentrated among a few issuers that represent a

negligible portion of the index.

4.4 Carbon Intensity by regions

The assessment of CI (scope 1 and 2) across diverse economic regions on Table 10 reveals

noteworthy disparities. Notably, Emerging countries, including Africa, Latin America and

Emerging Asia, exhibit higher CI compared to Europe and North America. The observed

variance underscores the influence of regional energy compositions. In these regions, the

reliance on carbon-intensive energy sources for electricity generation contributes significantly

to the elevated CI. In contrast, Europe and North America, with a greater emphasis on

renewable energy and cleaner technologies, demonstrate lower CI.

A potential risk is that investors may divest from emerging countries due to their elevated

CI. This poses a significant challenge as these nations necessitate additional capital expendi-

tures to effectively implement and achieve their climate agenda. The paradoxical scenario of

increased capital withdrawal in tandem with heightened capital requirements exacerbates the

financial constraints faced by emerging economies striving to align with global decarboniza-

tion objectives. This underscores the intricate interplay between environmental sustainability

goals and economic considerations, requiring nuanced policy interventions and international
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Figure 3: Carbon intensity (Scope 1-2) contribution by sector as of 12/31/2024
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collaboration to address the potential adverse impacts on emerging economies’ climate efforts.

Figure 4: Carbon intensity (Scope 1-2) by region as of 12/31/2024

Table 11 provides the contribution of major world regions to the carbon footprint of the

index, and reveals significant disparities in carbon contributions relative to market capital-

ization. Emerging Asia, for instance, contributes nearly 45% of the index’s carbon footprint

despite representing only 18% of global market capitalization. This disproportionate contribu-

tion underscores the outsized impact of emerging Asian economies on the WACI of the index

as a lot of GHG emission moved from developed countries to Asian emerging countries in

the context of globalization. Conversely, Africa’s contribution is modest, accounting for only

0.73% of the index’s carbon footprint. However, this figure is 2.3 times greater than Africa’s

weight in the index, highlighting a relative overrepresentation of GHG emissions from the

region. In contrast, North America contributes 24% to the index’s carbon footprint, despite

equities from the region representing 52% of the index. This incongruity suggests a potential

risk whereby investors seeking to reduce WACI of their portfolio may divert investments

away from emerging markets towards developed ones. Paradoxically, developed regions often

”import” carbon-intensive production from emerging economies (see Barahhou et al. (2023)).
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Figure 5: Carbon intensity (Scope 1-2) contribution by region as of 12/31/2024
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Figure 6: Implied Temperature Rise by sectors as of 2024/12/31

4.5 ITR by sector

Figure 6 and Table 12 present descriptive statistics of the ITR stratified by sectors, providing

insights into the distribution of data across different industrial sectors. Notably, the data

range for the variable is bounded between 1.3 and 10, a measure implemented by the data

provider to mitigate extreme values.

Upon examination, it becomes apparent that the three sectors (energy, basic materials and

utilities), characterized by intensive industrial activities, higher CI and substantial utilization

of carbon-intensive energy sources, exhibit mean and median values greater than 2.

In contrast, sectors characterized by less energy-intensive operations demonstrate mean

values below 2. This disparity in mean values suggests varying levels of energy consumption

and ITR across industrial sectors, highlighting potential distinctions in environmental impact

and resource utilization practices.

In the context of portfolio optimization, the integration of this variable could introduce

sectoral biases, underscoring the importance of careful consideration and mitigation strategies

to ensure the robustness and integrity of the optimization process.
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Figure 7: Implied Temperature Rise by region as of 2024/12/31

4.6 ITR by region

Figure 7 and Table 13 present descriptive statistics of the ITR stratified by regions, providing

insights into the distribution of data across different geographical areas. Regions like Africa,

Emerging Asia, and Latin America show higher mean ITR values, indicating greater implied

temperature rises. These regions often have higher industrial activity and energy mix based

on fuels. Conversely, Europe and North America have lower mean ITR values, suggesting less

energy-intensive operations. This variation highlights differences in environmental impact

and resource use across regions. In portfolio optimization, incorporating this variable could

introduce regional biases.

5 Results

5.1 Allocations by strategy on full sample

Table 14 presents the allocations and contributions by sector for our three different strategies:

Capital Weighted, Best in Universe (BiU), and Best in Class (BiC).

The Best in Universe (BiU) strategy focuses on reducing carbon emissions by selecting

the least emitting companies within each sector. Compared to the Capital Weighted strategy,
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the allocation to the Basic Materials sector is significantly reduced from 6.51% to 1.92%, with

a substantial drop in CI from 319.56 to 4.05, and contribution from 20.80 to 0.08. In the

Communications sector, the allocation increases from 8.46% to 10.64%, while theCI decreases

from 5.73 to 2.25, and contribution from 0.48 to 0.24. For the Consumer Cyclical sector, the

allocation decreases slightly from 13.69% to 12.04%, with a drop in CI from 32.24 to 4.68,

and contribution from 4.41 to 0.56. The Consumer Non-Cyclical sector sees a decrease in

allocation from 3.64% to 2.24%, with a reduction in CI from 36.30 to 4.38, and contribution

from 1.32 to 0.10. The Energy sector experiences a drastic reduction in allocation from 5.56%

to 0.16%, with a significant drop in CI from 258.86 to 3.95, and contribution from 14.39 to

0.01. In the Financial sector, the allocation increases from 16.87% to 23.69%, with a decrease

in CI from 5.65 to 0.88, and contribution from 0.95 to 0.21. The Healthcare sector sees an

increase in allocation from 6.19% to 7.88%, with a reduction in CI from 6.96 to 2.37, and

contribution from 0.43 to 0.19. The Industrial sector’s allocation decreases from 12.30% to

10.36%, with a drop in CI from 48.67 to 4.12, and contribution from 5.99 to 0.43. The Real

Estate sector’s allocation increases from 2.22% to 2.75%, with a reduction in CI from 6.35 to

2.86, and contribution from 0.14 to 0.08. In the Technology sector, the allocation increases

from 21.66% to 27.74%, with a decrease in CI from 8.52 to 1.27, and contribution from 1.84 to

0.35. The Utilities sector sees a reduction in allocation from 2.92% to 0.57%, with a significant

drop in CI from 605.74 to 2.77, and contribution from 17.67 to 0.02. Overall, the BiU strategy

significantly reduces the CI by lowering allocations to high-emission sectors like Energy and

Utilities, while increasing allocations to low-emission sectors like Financials and Technology.

The Best in Class (BiC) strategy selects the best-performing companies in terms of en-

vironmental impact within each sector. Compared to the Capital Weighted strategy, the

allocation to the Basic Materials sector is slightly reduced from 6.51% to 6.14%, with a drop

in CI from 319.56 to 33.93, and contribution from 20.80 to 2.08. In the Communications

sector, the allocation is reduced from 8.46% to 4.09%, with a decrease in CI from 5.73 to

0.54, and contribution from 0.48 to 0.02. For the Consumer Cyclical sector, the allocation

increases from 13.69% to 14.97%, with a drop in CI from 32.24 to 5.88, and contribution from

4.41 to 0.88. The Consumer Non-Cyclical sector sees an increase in allocation from 3.64% to

4.67%, with a reduction in CI from 36.30 to 11.90, and contribution from 1.32 to 0.56. The

Energy sector’s allocation is slightly increased from 5.56% to 6.14%, with a drop in CI from
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258.86 to 118.33, and contribution from 14.39 to 7.27. In the Financial sector, the allocation

decreases from 16.87% to 13.44%, with a reduction in CI from 5.65 to 0.31, and contribution

from 0.95 to 0.04. The Healthcare sector sees an increase in allocation from 6.19% to 8.04%,

with a drop in CI from 6.96 to 2.21, and contribution from 0.43 to 0.18. The Industrial

sector’s allocation decreases slightly from 12.30% to 11.88%, with a drop in CI from 48.67 to

4.74, and contribution from 5.99 to 0.56. The Real Estate sector’s allocation decreases from

2.22% to 2.07%, with a reduction in CI from 6.35 to 1.44, and contribution from 0.14 to 0.03.

In the Technology sector, the allocation increases from 21.66% to 26.65%, with a drop in CI

from 8.52 to 0.79, and contribution from 1.84 to 0.21. The Utilities sector sees a reduction

in allocation from 2.92% to 1.90%, with a significant drop in CI from 605.74 to 42.44, and

contribution from 17.67 to 0.81. The BiC strategy aims to balance sector allocations while

selecting the best-performing companies in terms of environmental impact, resulting in a more

moderate reduction in carbon footprint compared to the BiU strategy.

5.2 Carbon intensity by strategy on full sample

The BiU strategy significantly reduces the WACI to 2.26 tCO2eq/USD million, compared to

68.44 tCO2eq/USD million in the Capital Weighted strategy. This represents a reduction of

approximately 96.7%. High-emission sectors like Energy and Utilities see drastic reductions

in their allocations.

The BiC strategy also reduces the overall carbon intensity, achieving 12.64 tCO2eq/USD

million, which is an 81.5% reduction compared to the Capital Weighted strategy. While the

reduction is less dramatic than that of the BiU strategy, the BiC strategy maintains a more

balanced sector representation.

5.3 Carbon attribution by strategy on full sample

Table 4 attributes the drop in scope 1-2 WACI to three effects: allocation, selection, and

interaction, based on the principles of performance attribution as described by Brinson et al.

(1986). At the full sample level, the allocation effect accounts for a significant portion of

decarbonization of the BiU strategy, while the selection effect is also substantial, though

partially offset by the interaction effect.

A detailed examination of Table 4 reveals that a large part of the observed allocation
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effect stems from the underweighting of sectors such as Basic Materials, Energy, and Utili-

ties. Similarly, the selection effect is predominantly driven by these sectors, indicating that

the strategy reduces carbon footprint by divesting from high-emission sectors with minimal

presence in the stock market.

The table also presents the carbon performance attribution of the Best in Class strategy.

In this strategy, sector weight deviations remain significant. For instance, the Utilities sector

represents a smaller portion of the portfolio compared to the benchmark, due to the substantial

size of some highly carbon-intensive players within the sector. Conversely, the Energy sector

sees an increase in weight, as major players in this sector have a lower carbon footprint than

smaller ones.

The allocation effect is less significant in the Best in Class strategy compared to the

Best in Universe strategy. In the former, the allocation effect increases the carbon footprint,

whereas it reduces it in the latter. The combined selection and interaction effects lead to a

substantial reduction in carbon intensity, highlighting the importance of selecting the least

energy-intensive securities within sectors.

However, a paradox arises in the Best in Class strategy, where the portfolio leads to an

increased allocation to high-emission sectors at the expense of essential sectors like Utilities.

This is due to the fact that the least polluting issuers in the Energy sectors (mainly including

the oil and gas sector) are typically larger, while those in Utilities (including the essential

subsector of electricity production) sectors are smaller. To mitigate this issue, investors should

consider neutralizing sectoral allocation discrepancies or incorporating market capitalization

in defining thresholds. The intra-sectoral Best-in-Class exclusion strategy, when combined

with a market capitalization-based portfolio construction, proves to be suboptimal due to its

unintended side effects on the allocation to the oil sector.

5.4 Hypothesis testing results

Table 5 illustrates the results of the primary statistical tests, based on the full sample, at

the security level. This analysis is crucial for understanding the efficacy and robustness of

the evaluated decarbonization strategies, namely BiU and BiC, compared to the cap-weighted

strategy.

The WACI of the BiU strategy (CIBiU = 2.26) is significantly lower than that of the
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Sector WeightB CIB WeightS CIS Alloc. Selec. Inter.

Best in universe strategy

1 Communications 8.46 5.73 10.64 2.25 0.12 -0.29 -0.08
2 Industrial 12.30 48.67 10.36 4.12 -0.95 -5.48 0.87
3 Financial 16.87 5.65 23.69 0.88 0.39 -0.80 -0.33
4 Consumer non-cyclical 3.64 36.30 2.24 4.38 -0.51 -1.16 0.45
5 Consumer cyclical 13.69 32.24 12.04 4.68 -0.53 -3.77 0.45
6 Real estate 2.22 6.35 2.75 2.86 0.03 -0.08 -0.02
7 Basic materials 6.51 319.56 1.92 4.05 -14.67 -20.54 14.48
8 Energy 5.56 258.86 0.16 3.95 -13.98 -14.17 13.76
9 Utilities 2.92 605.74 0.57 2.77 -14.21 -17.59 14.15
10 Technology 21.66 8.52 27.74 1.27 0.52 -1.57 -0.44
11 Healthcare 6.19 6.96 7.88 2.37 0.12 -0.28 -0.08
12 Total 100.00 68.44 100.00 2.26 -43.66 -65.74 43.22

Best in class strategy

1 Communications 8.46 5.73 4.09 0.54 -0.25 -0.44 0.23
2 Industrial 12.30 48.67 11.88 4.74 -0.20 -5.40 0.18
3 Financial 16.87 5.65 13.44 0.31 -0.19 -0.90 0.18
4 Consumer non-cyclical 3.64 36.30 4.67 11.90 0.37 -0.89 -0.25
5 Consumer cyclical 13.69 32.24 14.97 5.88 0.41 -3.61 -0.34
6 Real estate 2.22 6.35 2.07 1.44 -0.01 -0.11 0.01
7 Basic materials 6.51 319.56 6.14 33.93 -1.18 -18.60 1.06
8 Energy 5.56 258.86 6.14 118.33 1.51 -7.81 -0.82
9 Utilities 2.92 605.74 1.90 42.44 -6.16 -16.43 5.73
10 Technology 21.66 8.52 26.65 0.79 0.43 -1.67 -0.39
11 Healthcare 6.19 6.96 8.04 2.21 0.13 -0.29 -0.09
12 Total 100.00 68.44 100.00 12.64 -5.14 -56.16 5.50

Table 4: Carbon performance attribution of the two strategies

BiC strategy (CIBiC = 12.64) and the cap-weighted strategy (CICW = 68.44). The p-value

of the Student tests indicate that both BiU and BiC strategies effectively reduce the carbon

footprint of selected securities, as they are less than 0.05, confirming that the reduction in

carbon intensity is statistically significant. Furthermore, the comparison between BiU and

BiC strategies also yields a p-value less than 0.05, indicating that the BiU strategy performs

significantly better in terms of carbon intensity reduction.

The average ITR of securities selected by the BiU strategy stands at ITRBiU = 1.3oC,

whereas the average ITR for the BiC strategy is ITRBiC = 1.69oC, which is lower than the

ITR of the full sample (ITRpop = 2.92oC). The Student’s p-values suggest that it is virtually

certain that the selected securities have a significantly lower ITR than the full sample, with

p-values less than 0.05. Additionally, the difference between BiC and BiU strategies also

indicates a p-value less than 0.05, concluding that ITR of BIC stratgy ITRBiC is very likely

higher than the one of BiU strategy ITRBiU . This finding implies that the BiU strategy
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is more effective in reducing the ITR compared to the BiC strategy. As a consequence,

hypothesis 1 (the BiU decarbonization strategy performs significantly better than the BiC

decarbonization strategy both in terms of Carbon Emissions to EVIC intensity and ITR), is

validated by our analysis.

The sector weights reveal significant differences between the strategies. For instance, the

BiU strategy has higher weights in the communications and financial sectors compared to

the cap-weighted strategy, while the BiC strategy shows lower weights in these sectors. The

p-values for the chi-square tests indicate that these differences are statistically significant,

with values less than 0.05 for most sectors. This suggests that the sectoral composition of

the portfolios is substantially altered by the decarbonization strategies. Notably, the utilities

sector (mainly comprising the electricity sub-sector) is significantly underweighted in both BiU

and BiC strategies compared to the cap-weighted strategy, validating hypothesis 3 (BiU and

BiC strategies significantly reduce investors’ exposure to the electricity sector compared to

an equivalent market portfolio). The p-values for the chi-square tests for these sectors are

less than 0.05, confirming the statistical significance of this underweighting. Furthermore, the

BiU strategy has a lower exposure to the electricity (utilities) sector than the BiC strategy,

as indicated by the chi-square test results, supporting hypothesis 4 (BiU strategy has lower

exposure to the electricity sector than BiC strategy).

The geographic exposures highlight variations in the representation of different regions.

The BiU and BiC strategy shows a higher weight in North America and lower weights in

Emerging Asia (13.1 and 13.4 respectively vs 17.1) and Africa (0.23 and 0.1 respectively vs

0.31) compared to the cap-weighted strategy. The p-values for the chi-square tests confirm

that these differences are statistically significant, with values less than 0.05 for most regions.

This indicates that the geographic distribution of investments is significantly influenced by

the decarbonization strategies. Specifically, the significant underweighting of Emerging Asia

and Africa in both BiU and BiC strategies supports Hypothesis 5 , which posits that these

strategies significantly reduce investors’ exposure to emerging markets.

These results provide valuable insights into the performance and robustness of the BiU

and BiC strategies. The statistically significant p-values underscore the efficacy of these

strategies in reducing carbon intensity and ITR, as well as their impact on sector weights and

geographic exposures. Further validation through resampling methods, such as bootstrap, is
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recommended to ensure the robustness of these findings.

CW BiU BiC BiU-CW p-value BiC-CW p-value BiU-BiC p-value

Obs. 8 373 4 186 4 184 -4 187 n.a. -4 189 n.a. 2 n.a.

Sector weights

Communications 8.46 10.64 4.09 2.18 0 -4.37 0 6.55 0

Industrial 12.3 10.36 11.88 -1.94 0 -0.42 0.52 -1.52 0.03

Financial 16.87 23.69 13.44 6.82 0 -3.43 0 10.25 0

Consumer non-cyclical 3.64 2.24 4.67 -1.4 0 1.03 0.01 -2.43 0

Consumer cyclical 13.69 12.04 14.97 -1.65 0.01 1.28 0.06 -2.93 0

Real estate 2.22 2.75 2.07 0.53 0.08 -0.15 0.63 0.68 0.05

Basic materials 6.51 1.92 6.14 -4.59 0 -0.37 0.45 -4.22 0

Energy 5.56 0.16 6.14 -5.4 0 0.58 0.2 -5.98 0

Utilities 2.92 0.57 1.9 -2.35 0 -1.02 0 -1.33 0

Technology 21.66 27.74 26.65 6.08 0 4.99 0 1.09 0.27

Healthcare 6.19 7.88 8.04 1.69 0 1.85 0 -0.16 0.82

Climate metrics

Carbon intensity 68.44 2.26 12.64 -66.18 0 -55.8 0 -10.38 0

Modified Carbon Intensity 68.44 45.92 17.78 -22.52 0 -50.66 0 28.14 0

ITR 2.92 1.3 1.69 -1.62 0 -1.23 0 -0.39 0

Modified ITR 2.92 1.45 1.7 1.47 0 1.22 0 -0.25 0

Geographic exposures

Emerging Asia 17.1 13.09 13.36 -4.01 0 3.46 0 -0.27 0.74

Europe 17.11 17.68 19.7 0.57 0.44 4.42 0 -2.02 0.02

Developed Asia / Pacific 10.84 7 7.39 -3.83 0 5.2 0 -0.39 0.52

North America 53.33 61.14 58.3 7.81 0 -13.94 0 2.84 0.01

Latin America 1.31 0.86 1.15 -0.45 0.03 1.08 0.5 -0.29 0.22

Africa 0.31 0.23 0.1 -0.08 0.54 -0.22 0.04 0.13 0.23

Table 5: Main Statical tests

5.5 Robustness check

Table H presents a comprehensive examination of key descriptive statistics derived from re-

sampled data, encompassing variables pertinent to carbon intensity, ITR metrics, carbon

performance decomposition, emerging countries weights and utilities sector weights. These

statistics are avalable across Cap-weighted, BiU and BiC strategy. The dataset under scrutiny

offers insights into the central tendencies, dispersion, shape, and quartile distributions char-

acterizing the resampling outcomes.

The results from Table 18 consistently reject the normality assumptions across variables, as

indicated by the Shapiro-Wilk, Jarque-Bera, and Kolmogorov-Smirnov tests. This rejection is

largely attributed to the presence of outliers within various sectors, which persistently distort

the data distributions even after resampling attempts. Additionally, the pervasive rejection of
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normality assumptions highlights the limitations of relying solely on parametric techniques,

necessitating consideration of alternative non-parametric approaches or transformations to

ensure the validity of statistical inferences. The results from Table 18 are corroborated by two

series of graphs, 8 and 11, displaying Q-Q plots and density plots of the resampled variables.

These graphical representations further underscore the departure of the data distributions

from normality, aligning with the findings of the normality tests. The Q-Q plots reveal

systematic deviations from the diagonal line, indicative of non-normal distributions, while

the density plots exhibit skewed or multi-modal distributions, further confirming the presence

of outliers and non-Gaussian behavior. These visualizations provide additional support for

the need to employ robust statistical techniques and outlier detection strategies in analyzing

results.

Figure 8: QQ plots of bootstrapped metrics
Source: author’s calculations
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Figure 9: Density of differences metrics

Table 6 presents the carbon metric differences in terms of quartiles (median, P95, P99,

P99.5). The median CI gap between the BiU strategy and the CW strategy is -66.1 tCO2/M$

invested. The gap is lower than -23.8 tCO2/M€ in only 0.5% of cases. By construction, the

BiU strategy consistently exhibits a lower CI compared to the CW strategy. The median CI

gap between the BiC and CW strategies is -55.4 tCO2/M$ invested. This gap falls below -16.4

tCO2M$ in only 0.5% of cases. By design, the BiC strategy consistently maintains a lower

CI compared to the CW strategy. The CI difference between the BiU and BiC strategies

is -10.3 tCO2/M$ invested and is never positive by design. This order is maintained for the

results in terms of ITR. The ITR of the BiC strategy is lower than that of the BiU strategy

in only 3% of the samples.

Table 7 allows for testing whether the mean of the resampled CI from the BiU strategy
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mean sd Q0.5 Q0.90 Q0.95 Q0.99 Q0.995 P (X > 0)

∆CIBiU -69.83 25.15 -66.13 -41.61 -36.06 -26.07 -23.79 0.00
∆CIBiC -59.57 24.00 -55.42 -32.92 -27.05 -19.39 -16.42 0.00
∆CIBiUvsBiC -10.26 9.33 -6.89 -3.08 -2.43 -1.49 -1.23 0.00

∆ITRBiU -1.64 0.59 -1.53 -1.01 -0.90 -0.72 -0.62 0.00
∆ITRBiC -1.32 0.63 -1.23 -0.65 -0.45 -0.17 -0.05 0.00
∆ITRBiUvsBiC -0.32 0.34 -0.19 -0.04 -0.00 0.02 0.04 0.01

∆wBiU
e -0.02 0.02 -0.02 -0.01 -0.01 -0.00 0.00 0.01

∆wBiC
e -0.01 0.01 -0.01 0.00 0.01 0.02 0.02 0.17

∆wBiUvsBiC
e -0.02 0.01 -0.01 -0.00 -0.00 0.00 0.00 0.02

∆wBiU
EM -0.04 0.06 -0.03 0.01 0.02 0.06 0.08 0.16

∆wBiC
EM -0.04 0.04 -0.04 0.01 0.03 0.10 0.12 0.13

∆wBiUvsBiC
EM 0.09 8.13 0.75 10.23 15.04 16.18 0.58

Table 6: Quantiles of differences metrics

is significantly lower than that of the BiC strategy. The Student’s t-statistic stands at -49.1,

while the critical value of F0.99 = −3.8 was obtained from the empirical centered reduced

distribution of resampled data. As the t-statistic is lower than the critical value, the null

hypothesis of equal means is rejected with a 99% confidence level. Similarly, for the ITR, the

t-statistic is -41.6, significantly lower than the resampled critical value of -3.5. Thus, the null

hypothesis of equal means is rejected. Therefore, Hypothesis 1 is validated by our various

statistical tests: the BiU strategy outperforms the BiC strategy in terms of CI and ITR.

The analysis of the Table H reveals a notable disparity between the mean and median val-

ues of allocation effects associated with the BiU and BiC strategies. Specifically, it is observed

that both the mean and median allocation effects of the BiC strategy surpass those of the

BiC counterpart, standing at respectively -47.03 tCO2/M$ and -42.80 tCO2/M$ for the BiU

strategy, while standing at -11.85 tCO2/M$ and -10.60 tCO2/M$ for the BiC strategy. The

interquartile range is between [−58.4;−32.6] for the BiU strategy, compared to [−18.8;−3.3]

for the BiC strategy. This observation suggests distinct characteristics in the allocation and

selection strategies employed by the two approaches. The statistics observed indeed validate

Hypothesis 2 (The BiU decarbonization performance is more driven by allocation effects

than the BiC decarbonization performance).

In Table 16, the exposure to utilities sector (i.e. mainly the electricity sector) is also lower

in both the BiU and BiC strategies compared to the CW strategy, in mean and median.

31



The average exposure to utilities sector for the cap weighted strategy stands at 3.11% in the

bootstrap sample, with an interquartile range of [1.90%; 3.97%]. On the contrary, the BiU

and BiC strategy have an average exposure to the electricity sector respectively of 0.66% and

2.19%, with interquartile ranges respectively of [0.11%; 0.86%] and [1.01; 2.97]. According to

Table 7, these underexposures are statistically significant when testing on the resampled data.

The z-stat for the difference in weight for the electricy sector relative to the CW strategy is

z − stat = −72.72, for the BiU strategy, well below the resampled critical value of -3.0, for

a α = 1% confidence level. Conversely, the z − stats = −33.9 for the BiC strategy is well

below the resampled critical value of -2.96, with a confidence level α = 1%. We reject the null

hypothesis of equal weights of electricity sector between the CW strategy and the BiU strategy

and between the CW strategy and the BiC strategy. Overall, the Hypothesis 3 (BiU and

BiC strategies significantly reduce investors’ exposure to the electricity sector compared to

an equivalent market portfolio) is verified.

According to Table 7, the difference in weights of utilities / electricity sector between

the BiU strategy and the BiC strategy is significant. The t-stat stands at -48.54 with a

resampled critical value of -3.47 for a confidence level α = 1%, rejecting the null hypothesis

of equality of weights in mean. As a consequence, the Hypothesis 4 (BiU strategy has lower

exposure to the electricity sector than BiC strategy) is validated: the BiU sampling strategy

as significantly lower exposure to the electricity sector than the BiC sampling strategy.

In Table 17, the exposure to emerging markets is lower in both the BiU and BiC strate-

gies compared to the cap-weighted strategy, in mean and median. The average exposure to

emerging markets for the cap weighted strategy stands at 19.6% in the bootstrap sample,

with an interquartile range of [14.9; 22.9]. On the contrary, the BiU and BiC strategy have

an average exposure to emerging market respectively of 15.7% and 15.4%, with interquartile

ranges respectively of [10.7; 19.7] and [10.0; 18.2]. According to the Table 7, these underex-

posures are statistically significant when testing on the resampled data. The z-stat for the

difference in weight of emerging markets relative to the benchmark is z − stats = −31.8, for

the BiU strategy, well below the resampled critical value of -3.9, for a confidence level α = 1%.

We reject the null hypothesis of equal weights of emerging market between the CW strategy

and the BiU strategy. Conversely, the z − stats = −41.9 for the BiC strategy is well below

the resampled critical value of -2.5, for a confidence level α = 1%. As a consequence, the
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null hypothesis of Hypothesis 5 is accepted : BiU and BiC strategies significantly reduce

investors’ exposure to emerging markets. Moreover, the difference in weight of emerging mar-

kets between the BiU strategy and the BiC strategy is not significant. The t-stat stands at

1.46 with a critical value at 4.01.

Conversely, the Modified Carbon Intensity statistic is calculated on the two substets.

The BiU strategy (CI∗BiU = 49.4) is penalized compared to the BiC (CI∗BiC = 24.5). The

statistic aims to penalize allocations effects by the BiC strategy and under-investment in

the electricity sector. Hence, one clearly observe the limitations of the two major indicators

currently used, namely carbon footprint and ITR, as these two climate impact assessment

metrics favor exclusionary strategies targeting specific sectors over a systematic transition

toward a low-carbon economy.

t-stat p-value w-stat p-value F0.95 F0.975 F0.99 F0.995

∆CIBiU,CW -124.17 0.00 0.00 0.00 -1.90 -2.38 -2.83 -3.31

∆CIBiC,CW -111.01 0.00 0.00 0.00 -1.87 -2.37 -2.96 -3.27

∆CIBiU,BiC -49.15 0.00 0.00 0.00 -2.22 -2.92 -3.78 -4.31

∆ITRBiU,CW -124.27 0.00 0.00 0.00 -1.80 -2.51 -3.49 -4.10

∆ITRBiC,CW -94.08 0.00 807.00 0.00 -1.75 -2.35 -3.21 -3.76

∆ITRBiU,BiC -41.64 0.00 5608.00 0.00 -2.19 -2.56 -3.53 -3.80

∆WeightutilitiesBiU,CW -72.72 0.00 2694.00 0.00 -1.84 -2.42 -3.04 -3.53

∆WeightutilitiesBiC,CW -33.88 0.00 210787.00 0.00 -1.79 -2.33 -2.96 -3.57

∆WeightutilitiesBiU,BiC -48.54 0.00 10686.00 0.00 -1.82 -2.60 -3.47 -4.76

∆WeightEmerging
BiU,CW -31.81 0.00 181708.00 0.00 -2.44 -3.29 -3.89 -4.26

∆WeightEmerging
BiC,CW -41.94 0.00 174004.00 0.00 -1.48 -1.94 -2.43 -2.64

∆WeightEmerging
BiC,CW 1.46 0.14 1319770.00 0.00 -2.48 -3.52 -4.01 -4.24

Table 7: Hypothesis Testing on differences

33



6 Discussion

This study highlights concerns about current indicators, focusing on CI and ITR, and in-

vestment strategies, focusing on the Best-in-Universe and Best-in-Class strategies, in climate

finance. It examines whether these strategies show sectoral and geographical biases and if the

indicators contribute to these biases.

BiU and BiC strategies not only impact investors but also have broader economic effects.

Reducing CI in portfolios has costs for both investors and the economy. One major effect is

the reduced presence of emerging markets in investment portfolios, along with a decrease in

the electricity sector’s importance.

This shift in investment strategies aims to align portfolios with sustainability goals. By

prioritizing lower CI, investors move capital away from high-carbon sectors and regions, in-

cluding many emerging markets. This can limit these markets’ access to capital, hindering

their development and increasing global inequalities.

The BiU strategy tends to exclude several sectors, especially the electricity sector, which is

crucial for economic activity. This sector is also underweighted in the BiC strategy compared

to a Cap Weighted strategy. This suggests that exclusionary strategies, while aiming for

sustainability, may encourage superficial tactics rather than genuine efforts.

The decline in the electricity sector’s prominence shows the impact of sustainability-driven

investment strategies. As investors move towards low-carbon alternatives, traditional electric-

ity providers, especially those using fossil fuels, may reduce their investments in cleaner energy

sources. While necessary for climate change, these transitions have costs and socioeconomic

implications, especially for regions relying on legacy energy infrastructure.

Due to underinvestment in the energy sector, usual metrics like carbon intensity and ITR

are not relevant for portfolio construction based on exclusions. Corrections reduce carbon

performance but still outperform the market. Therefore, it’s essential to evaluate investment

portfolios not only on these criteria but also on their ability to invest in green CAPEX, as

highlighted by the European taxonomy (2020).

However, this may not be enough. Regulators must encourage renewable and decarbonized

energy actors to raise funds from investors. This includes facilitating market access, especially

through IPOs, and possibly spinning off renewable energy subsidiaries of carbon-intensive
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companies to attract investors.

Reducing investments in emerging markets contradicts the goal of transition given their

energy mix, as well as the Sustainable Development Goals (SDG) of the United Nations.

However, these markets are a small part of global capitalization. To support the transition,

investments in emerging markets must be encouraged. This requires facilitating investment

flows from northern to southern countries and overcoming the Lucas paradox. Emerging

countries need more ambitious strategies, and European institutional investors must adapt

their rules. Facilitating the issuance of securities by companies from emerging markets on

developed markets would improve their financial integration.

Markets alone may not solve these issues due to currency risks and institutional con-

straints. Public authorities must also be involved. Development banks and state-sponsored

funds can raise more funds than the market. This requires fair risk-sharing between investors,

public authorities, and actors in emerging markets.

Blended finance, defined as the strategic use of development finance and philanthropic

funds to mobilize private capital flows to emerging and frontier markets, can increase invest-

ment leverage. It ensures attractive returns for investors, equitable risk-sharing, and aligned

interests. However, these strategies need more assets under management and stronger incen-

tives from public authorities, especially through taxation.

The Environmental Kuznets Curve explains these trends. Emerging economies often use

high-pollution energy technologies, leading to high CI. Investors aiming for environmental

considerations may reduce financing to these countries instead of supporting their transition.

Historically, developed nations have emitted more GHGs than emerging ones. Reducing

financial support to emerging economies based on their high CI raises fairness questions.

Climate short-termism may lead emerging economies to ignore Paris Agreement commitments,

arguing that developed nations, major historical contributors to climate change, are now

withdrawing financial support.

From a theoretical perspective, the aging population and slowing growth in northern

countries require increased investment in southern countries, where birth rates are high. For

optimal intergenerational balance, developing these financial flows would improve the eco-

nomic situation in a Pareto sense. Simplistic climate criteria could reduce these flows, moving

the global economy away from an optimal situation. Increased focus on environmental crite-
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ria can negatively impact social criteria, affecting both the development of southern countries

and the financing of pensions in northern countries.

The highly efficacious strategies of BiU and BiC in terms of CI inadvertently engender

externalities, particularly evident in the diminished financial allocations to pivotal sectors

and emerging economies. Forward-looking metrics such as the Intensity Transition Ratio

(ITR) have been conceptualized to calibrate the pace of decarbonization across sectors and

economies, employing the Sector Decarbonization Approach. Empirical findings reveal that

short-termist BiU and BiC strategies, anchored in CI, exhibit notable proficiency in terms of

ITR. Paradoxically, sectors characterized by heightened CI encounter challenges in securing

commensurate budgets for decarbonization initiatives. Thus, the ITR emerges as a flawed

metric, failing to internalize the external costs associated with BiU and BiC strategies.

The study questions the effectiveness of environmental criteria integration by private actors

and the market. While integrating climate criteria is a significant step in holding financial

actors accountable, there is no guarantee that the resulting price signal will lead to a Pareto-

improving situation without substantial changes in the investment supply. The usual criteria

used (carbon intensity and ITR) can therefore be very insufficient, even misleading, and pure

exclusion strategies (BiU and BiC) can delay the transition if not accompanied by ad-hoc

investments in renewable energy companies and targeted investments, such as green bonds or

sustainability-linked bonds.

In essence, while the pursuit of lower CI represents a commendable endeavor towards

sustainability, it necessitates a nuanced understanding of its broader economic ramifications.

Efforts to mitigate carbon emissions within investment portfolios must be accompanied by

strategies to mitigate adverse socioeconomic impacts, ensuring a just transition towards a

sustainable future. Thus, while the observed reduction in CI signifies progress towards envi-

ronmental objectives, it also underscores the imperative for holistic approaches that reconcile

sustainability imperatives with broader economic considerations.

7 Conclusion

Private and public initiatives have strongly emphasized Carbon Emissions to EVIC (CI)

intensity as a benchmark indicator, and this metric of climate performance is now widely used
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as a reference indicator, both for communication with institutional investors and for products

aimed at private investors such as ETFs. This article has highlighted the limitations of CI,

both in terms of financing essential sectors and for emerging countries that will need to play

an active role in the decarbonization of the global economy.

Both Best-in-Class and Best-in-Universe strategies exhibit excellent climate performance

in terms of CI. However, far from aiding in financing the transition, these two exclusion

strategies pose a risk to energy transition. On the one hand, they reduce funding for the most

polluting sectors that require significant investment to transition. On the other hand, they

reduce funding for emerging countries, which have accounted for global emissions during the

globalization of the last thirty years. Concentrating portfolios on sectors and countries that

have little effort to make to align their emissions with the Paris Agreement seems entirely

counterproductive in the face of the climate warming challenge.

The Implied Temperature Rise aims to be a forward-looking indicator of impact mate-

riality. This metric was developed based on the work of the IPCC, evaluating companies’

decarbonization trajectories. It corresponds to the global temperature increase if the entire

global economy were to over- or under-emission greenhouse gases compared to the budget

defined by the IPCC in the same way as the company’s trajectory exceeds its 1.5◦C budget.

Each company’s budget depends on its sector and geographical location. By doing so, propo-

nents of the ITR hoped to limit the sector-based exclusion induced by short-term measures

such as CI.

This article has demonstrated that the ITR is a highly imperfect indicator of climate

performance since short-termist strategies, such as BiU and BiC, are not penalized. They

maintain excellent performance in terms of ITR. Far from internalizing the externalities of

these strategies, the ITR provides additional comfort to investors implementing them by

suggesting that their portfolio would effectively transition if the entire economy followed their

example. This is obviously not the case for our BiU and BiC strategies, which underinvest in

sectors at the forefront of the transition.

To support a just and effective transition, more ambitious investment strategies are needed,

along with facilitating financial flows from northern to southern countries. Blended finance

initiatives can play a key role in mobilizing private capital for emerging markets but require

stronger incentives and better integration of social and environmental criteria.
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Two indicators have been proposed to correct the limitations of the Carbon intensity and

the ITR. They involve penalizing the effects of sectoral and geographical allocation by cor-

recting CI and the ITR. The climate performance of BiU and BiC strategies is then widely

questioned by these indicators. These indicators would encourage the implementation of

sector-neutral and country-neutral strategies to avoid the external costs of exclusion strate-

gies. Further research is needed on the quality of these indicators, particularly in terms of

parameterization. Some under-allocations, such as in the oil sector, could, for example, be

tolerated, and over-exposure to renewable energy sectors favored.

Another area of further research is portfolio optimization using these indicators. The liter-

ature review has shown that many additional constraints are imposed by quantitative finance

researchers to address the limitations of CI. Sectoral weight limits are notably integrated into

optimization programs. It will be necessary to verify whether CI and ITR can do without

multiple constraints to more effectively define investment portfolios favoring energy transition.

The study does not evaluate the impact of these allocation strategies on market re-

turns/prices. In theory, the capital cost for the most polluting actors should increase as

these climate-related extra-financial criteria are considered. This topic is covered in the sec-

ond chapter of the thesis. Additionally, the criteria used are impact criteria of portfolios

on the environment, not financial materiality criteria: the impact of warming on portfolio

performance. These two topics are covered in the other chapters of the thesis.
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A GHG definitions

Giese et al. (2023) have proposed a taxonomy of climate related metrics. First, several defi-

nitions regarding greenhouse gas emissions mean at company level are provided.

Definition A.1 (Green House Gases Emissions). GHG emissions of a given company refer

to the release of gases into the atmosphere that contribute to the greenhouse effect, trapping

heat and causing global warming. GHG emission may result from its operations, including

manufacturing, transportation, and other activities.

These emissions can come from a variety of sources, such as burning fossil fuels for energy,

industrial processes, and transportation of goods and people. The main types of GHG emis-

sions include carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and fluorinated

gases. Measuring and reducing GHG emissions is an important part of corporate sustainabil-

ity, as it helps to mitigate climate change and its impacts on the environment and society.

Moreover, GHG emissions are generally divided into three different scopes, depending on

the direct or indirect production by the company.

Definition A.2 (Scope 1 GHG Emission). Scope 1 emissions are direct emissions, generated

by own activities and operations of a given firm.

As burning fossil fuels to generate heat or power in their facilities, operating their own

vehicles, or releasing process emissions from their manufacturing processes are considered as

Scope 1 GHG Emissions.

Definition A.3 (Scope 2 GHG Emission). Scope 2 are indirect GHG emissions, resulting

from the generation of purchased electricity, heating, or cooling consumed by a firm. As a

consequence, scope 2 emissions are generated by third-party entities, supplying energy to a

firm.

These companies notably includes electricity utilities and are often reported using location-

based or market-based emission factor. Despite they rely on a model, scope 2 emissions are

quite robust, because electricity mix are rather stable.

Definition A.4 (Scope 3 GHG Emission). Scope 3 emissions refer to all other indirect emis-

sion occuring during the value chain of the firm, including upstream and downstream activities.
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For example, on the upstream, the extraction, production and transportation of raw ma-

terials necessary to the production of outputs are considered as Scope 3 emission. On the

downstream scope 3 include the the transportation of outputs and emissions due to the use

of the products by customers. For most companies, it is the largest source of GHG emissions.

For instance, automobile makers have a large Scope 3 due to the gasoline used by the buyers

of their cars. There is a large double counting of in scope 3 emissions. For instance, the

gasoline used by cars are counted for automobile makers and oil and gas companies.
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B Carbon Intensity to EVIC : a static climate impact metric

Giese et al. define Carbon Emissions to EVIC Intensity (in short ”carbon intensity” or ”CI”)

as

”The current climate impact metric which indicates the amount of GHG emissions

(in metric tons) an investor would be responsible for per USD 1 million of financing

of a company. Depending on the use case, a company’s GHG emissions can be

based on Scopes 1, 2 or 3, either individually or on a combined basis.”

The metric at time t CIi(t) is computed as the GHG emissions of company i at time t

GHGi(t) divided by the EVIC of company i at time t denoted EV ICi(t). EVIC stands for

”Enterprise Value Including Cash,” a measure of a company’s total value aggregating both

its market capitalization (the value of its outstanding shares) and its gross debt. Therefore,

the GHG or Carbon Emissions to EVIC intensity (”CI”), denoted CIi is generally expressed

in tonnes of CO2 emitted per million dollars invested.

CIi(t) =
GHGi(t)

EV ICi(t)

The carbon footprint makes it possible to determine the financed emissions of a portfolio P

at time t, denoted FEP (t), i.e. the carbon emissions attributable to the portfolio as a whole,

by multiplying the carbon footprint of each asset i by the exposure of the portfolio EXi(t) to

the given asset. By denoting EX, the vector of exposure at time t and CI the vector of CI.

FEP = CI · EX

Consequently, the CI of the portfolio is written directly as the average of the CI weighted

by the weight of each asset/issuer in the portfolio wi, as is refered as the Weighted Average

Carbon Intensity or WACIP . By denoting w the vector of asset weights in the portfolio, the

formula of WACI is the following:

WACIP = wT · CI

Giese et al. suggests the CI is one of the most widely used and popular measures of

climate impact for several reasons. On the one hand, it is recommended by several regulatory

41



bodies and private initiatives. This is therefore the key metric according to the Net Zero

initiative, in terms of commitments. In addition, it is possible to make a carbon performance

attribution of a portfolio against its benchmark, using this metric.

However, the measure is not free from criticism. On the one hand, it is sensitive to changes

in market values: when the EVIC increases (rise in market capitalization), the CI decreases.

This element should therefore be corrected to dynamically compare two CI. In its 2019 report,

the group of technical experts on sustainable finance (TEGSF (2019)), recommends correcting

the CI measurement of the portfolio by taking into account the ratio between the average

EVIC of the period ¯EV IC(t) with the average EVIC of the reference period ¯EV IC(0).

WACIP = wT · CI
¯EV IC(t)
¯EV IC(0)

Moreover, CI is a static measure, it does not take into account the climate scenario and

the carbon footprint reduction trajectories set by companies or States.
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C Implied Temperature Rise : a dynamic climate impact met-

ric

The Implied Temperature Rise (”ITR” thereafter) measures a company’s climate impact

based on the validated and modeled carbon trajectory of its consumption / production of

GHG by 2050. The ITR calculates the probable rise in temperatures over global level if the

entire global economy achieved the same carbon budget overrun as the emitter. The ITR is

therefore based on carbon emission projections, known as the carbon trajectory. This can be

presented by the issuer, possibly validated by third-party organizations such as the Science

Based Target Intiative (or ”SBTI”), or even modeled by the data provider.

In addition, the ITR requires the definition of a carbon budget specific to each emitter

which is consistent with the 2°C scenarios of the IPCC (2018). If the cumulative GHG

emissions projected by 2050 are lower than the budget, then there is a carbon trajectory is

said to be undershooting, otherwise it is said to be overshooting.

Absolute Overshoot/Undershoot = Projected GHG emissions− Carbon Budget

Relative Overshoot/Undershoot =
Projected GHG emissions

Carbon budget
− 1

The ITR of the emitter is then calculated around the budget of a 2° warming using the

Transient Climate Response to Cumulative Carbon Emissions (TCRE) established by the

IPCC (2018) at 0.000545°C, which corresponds to the increase in temperature due to each

gigatonne of CO2e emitted around the 2°C budget. The global carbon budget retained by

MSCI is 1491 GtCO2 between 2020 and 2050 to limit global warming to 2°C. This budget is

based on the work of the IPCC.

ITRi = 2%+Relative Overshoot/Undershoot× TCRE ×Global Carbon Budget

The ITR of a portfolio cannot be calculated as the average ITR of the assets weighted

by their weight in the portfolio. Indeed, the aggregated overshoot/undershoot is not equal to

the average overshoot of the portfolio. The overshoot used for the calculation of the ITR is

a relative overshoot, whereas the calculation of the ITR of a portfolio must be done on the
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basis of the weighted absolute overshoot.

In addition, the absolute overshoot/undershoot of an issuer must be broken down between

the different types of contributors of capital, creditors or shareholders. In the classic case, the

excess CO2e emission is allocated proportionally to the weight of the exposure in the financial

structure. It should be specified that this means that an equity exposure of an amount K

will have the same share of the excess issue as a debt exposure of an amount K, regardless

of the maturity of the debt. Implicitly, this amounts to considering that debt exposures will

be rolled over and reinvested in the same issuers and that the allocation proportions between

issuers will be maintained perpetually until 2050.

Giese et al. (2023) provide the following formula to compute the ITR of a portfolio:

ITRP = 2%+

∑I
i=1 E(i) O(i)

EV IC(i)∑I
i=1 E(i) B(i)

EV IC(i)

× TCRE ×GB

With:

• E(i) the exposure of the portfolio to the ith issuer

• O(i) the absolute overshoot (undershoot) of the issuer i

• EV IC(i) is the Enterprise Value Including Cash of the issuer i

• B(i) is the given carbon budget of the issuer i, defined according to the guidelines of

the NGFS, taking into account for the country and the sector of the issuer

• TCRE the Transient Climate Response to Cumulative Carbon Emissions (TCRE) es-

tablished by the IPCC (2018) at 0.000545°C

• GB the Global Carbon Budget is the sum of carbon emissions to limit the global warm-

ing at 2°C, defined by the IPCC (2018) at 1,491 GtCO2e.
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D Carbon Performance Attribution

By design, an underexposure of BiU and BiC strategies to the most carbon-intensive sectors

could be anticipated, while these strategies favor the least carbon-intensive sectors. This

outcome poses a problem from the perspective of economic agents’ welfare, because highly

carbon-intensive sectors are sometimes vital to the economy, as is the case with the energy

sector. An effective transition requires significant investments in the electricity sector, as em-

phasized by the International Energy Agency. As a consequence, if the carbon outperformance

of a strategy stems from under-allocation to a vital sector, the investor following this kind of

strategy could be considered as acting as a free-rider, because this kind of investors benefits

from the production of a sector without contributing to its financing and the investments

necessary for its decarbonization. To evaluate this item, a carbon performance attribution

analysis of the portfolio has been untertaken.

The carbon performance attribution approach draws inspiration from the financial per-

formance attribution framework proposed by Brinson et al. (1986). It serves to elucidate

performance differentials among various factors, primarily the sectoral allocation of the port-

folio, intra-sector security selection, and a residual effect termed interaction effect. Within

the context of a portfolio’s carbon footprint analysis, performance differentials are discerned

based on the relative sectoral allocation within the investment universe and security selection

within each sector. A residual factor persists, referred as the interaction effect.

EP
C − EB

C = [wP − wB]
T · EB︸ ︷︷ ︸

allocation

+ [EP − EB]
T · wB︸ ︷︷ ︸

selection

+ [EP − EB]
T · [wP − wB]︸ ︷︷ ︸

interaction

The performance attribution has been simplified into two components: an allocation effect

and a selection effect, aiming to isolate, on one hand, the deviation in sectoral allocation, and

on the other hand, the effect of reducing the carbon footprint through security selection within

each sector. In this context, our interaction effect vanishes.

EP
C − EB

C =

J∑
j=1

wP
j Ei − wB

j Ej

EP
C − EB

C =
S∑

s=1

wP
s E

P
s − wB

j E
B
s
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EP
C − EB

C = wT
PEP − wT

BEB

EP
C − EB

C = [wP − wB]
T · EB︸ ︷︷ ︸

allocation

+ [EP − EB]
T · wP︸ ︷︷ ︸

selection

The WACI of each sector is defined as follows.

CIsector =

∑J
i=1w

BIC
i · CIi∑J

i=1w
BIC
i

Likewise, the carbon contribution of each sector s corresponds to the share of the carbon

footprint of the strategy attributable to sector s. It is calculated by summing the contributions

of each title i of sector S, product of the weight of title i and its CI.

Contribsector =
J∑

i=1

wBIC
i · CIi
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E Statistical tests used

T − test =

 H0 : µstrat = µpop

H1 : µstrat ̸= µpop

The Student’s t-test statistic is calculated using the formula:

T-stat =
µ̄strat − CIpop

σpop

√
1

nstrat

The Student’s t-test operates on the null hypothesis that the means of the two samples

are equal and generates a p-value indicating the probability that the observed differences are

due to chance. If the p-value falls below a pre-defined threshold (typically 0.05), the null

hypothesis is rejected, and it is concluded that there exists a significant difference between

the means of the two samples.

If the p-value falls below a pre-defined threshold (typically 0.05), the null hypothesis is

rejected, and it is concluded that there exists a significant difference between the means of

the two samples. The equality of means across multiple carbon performance metrics have

been tested, such as the Carbon Emissions to EVIC intensity and the ITR. To test these

hypotheses, statistical tests have been performed on our entire sample, comprised of the

stocks in the MSCI ACWI index. The statistical test commonly employed to compare two

empirical means is the Student’s t-test.

In the hypothesis 3, the test assess the difference between two observed proportions

Fsample = Fstrat from two samples (BiU and BiC) relative to the population Fpop = FCW .

The test is as follows.

Z − test =

 H0 : Fsample = Fpop

H1 : Fsample ̸= Fpop

The test statistic for the Z-test is calculated using the following formula:

Zstat =
Fsample − Fpop√

(Fpop(1− Fpop)
1

nsample

where:

• Fsample = Fstrat is the sample proportion of the sample, i.e. the weight in the tested

strategy
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• Fpop = FCW is the sample proportion of the full sample, i.e. the weight in the tested

strategy (Cap Weighted in MSCI ACWI)

• nstrat = n(sample) is the sample size of the tested strategy strategy

This Z-statistic approximately follows a standard normal distribution under the null hy-

pothesis of no difference between the two proportions. If the absolute value of the test statistic

exceeds the quantile of the standard normal distribution at a given confidence level of 1−α/2,

then the null hypothesis is rejected.

The usual statistical test for this type of hypothesis is a test of equality of proportions

between two samples, described below.

Z − test =

 H0 : Fstrat = FCW

H1 : Fstrat ̸= FCW

Frequency denotes the weight of sectors within each strategy, as well as the weight of

emerging countries. Emerging countries encompass the cumulative weights of Emerging Asia,

Latin America, and Africa. The test statistic for the Z-test is calculated using the following

formula:

Zstat =
Fstrat − FCW√(

Fstrat(1−Fstrat)
nstrat

)
+
(
FCW (1−FCW )

nCW

)
where:

• Fstrat is the sample proportion of the tested strategy

• FCW is the sample proportion of the benchmark strategy

• nstrat is the sample size of the tested strategy

• nCW is the sample size of the benchmark strategy
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F Descriptive statistics

Figure 10: Density of financial and carbon metrics (full sample)
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GICS LEVEL 1 n min q1 median mean q3 max sd

1 Basic materials 1026.00 0.00 31.45 115.62 451.91 389.68 11097.58 992.90
2 Communications 525.00 0.00 0.51 1.78 9.47 7.55 377.92 25.92
3 Consumer cyclical 1325.00 0.00 5.90 17.03 48.80 42.84 3919.36 158.55
4 Consumer non-cyclical 336.00 0.09 15.02 40.37 94.65 90.41 3190.32 227.07
5 Energy 264.00 0.03 112.62 260.00 470.09 566.74 11636.64 866.25
6 Financial 1112.00 0.00 0.27 0.70 2.74 1.41 417.31 19.03
7 Healthcare 431.00 0.03 3.58 8.61 22.80 22.00 885.45 57.75
8 Industrial 1670.00 0.00 3.93 12.41 72.57 42.53 3940.42 211.89
9 Real estate 453.00 0.00 1.45 3.71 9.75 9.29 406.95 28.62

10 Technology 948.00 0.00 1.30 4.85 33.02 28.15 1703.13 97.91
11 Utilities 283.00 0.02 19.53 171.07 783.71 757.09 8471.09 1478.41
12 Total 8373.00 0.00 1.78 10.15 129.08 52.07 11636.64 521.84

Table 8: Carbon Emissions to EVIC (scope 1-2) by sectors as of 12/31/2024

GICS LEVEL n weight contribution contribution (%) contribution
Weight

1 Basic materials 1026 6.51 20.80 30.40 4.67
2 Communications 525 8.46 0.48 0.71 0.08
3 Consumer cyclical 1325 13.69 4.41 6.45 0.47
4 Consumer non-cyclical 336 3.64 1.32 1.93 0.53
5 Energy 264 5.56 14.39 21.02 3.78
6 Financial 1112 16.87 0.95 1.39 0.08
7 Healthcare 431 6.19 0.43 0.63 0.10
8 Industrial 1670 12.30 5.99 8.75 0.71
9 Real estate 453 2.22 0.14 0.21 0.09

10 Technology 948 21.66 1.84 2.70 0.12
11 Utilities 283 2.92 17.67 25.82 8.85

Table 9: Carbon Emissions contribution by sectors (GICS classification)

REGION n min q1 median mean q3 max sd

1 Africa 80.00 0.09 6.95 46.28 236.67 272.89 4128.23 550.26
2 Developed Asia / Pacific 2045.00 0.00 3.38 17.67 100.37 63.11 5916.55 324.77
3 Emerging Asia 2121.00 0.00 3.05 15.75 245.15 88.17 11636.64 858.33
4 Europe 1455.00 0.00 1.08 5.56 96.38 29.52 8074.55 425.28
5 Latin America 198.00 0.01 2.23 15.51 129.25 82.58 2048.85 296.42
6 North America 2474.00 0.00 1.19 6.17 69.03 28.86 4786.52 251.58
7 Total 8373.00 0.00 1.78 10.15 129.08 52.07 11636.64 521.84

Table 10: Carbon Emissions to EVIC (scope 1-2) by region as of 12/31/2024

Sector Obs. Weight Contribution Contrib.(%) Contrib.
Weight

Africa 80 0.31 0.59 0.86 2.77
Developed Asia / Pacific 2045 10.84 7.61 11.12 1.03
Emerging Asia 2121 17.10 30.97 45.26 2.65
Europe 1455 17.11 10.44 15.26 0.89
Latin America 198 1.31 1.17 1.71 1.30
North America 2474 53.33 17.66 25.80 0.48

Table 11: Carbon Emissions to EVIC by World regions (scope 1-2) as of 12/31/2024
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Sector Obs. min q1 median mean q3 max sd

1 Basic materials 1 026 1.30 2.10 2.90 3.93 4.90 10.00 2.54
2 Communications 525 1.30 1.60 1.70 1.86 2.00 9.30 0.52
3 Consumer cyclical 1 325 1.30 2.20 2.70 3.32 3.50 10.00 2.06
4 Consumer non-cyclical 336 1.30 2.10 2.60 3.07 3.60 10.00 1.50
5 Energy 264 1.30 2.80 5.10 5.52 8.90 10.00 3.05
6 Financial 1 112 1.30 1.60 1.80 2.08 2.40 10.00 0.90
7 Healthcare 431 1.30 1.60 1.80 2.08 2.10 10.00 1.23
8 Industrial 1 670 1.30 1.80 2.30 2.85 3.00 10.00 1.81
9 Real estate 453 1.30 2.10 2.70 2.80 3.30 7.50 0.90

10 Technology 948 1.30 1.80 2.50 2.74 3.00 10.00 1.49
11 Utilities 283 1.30 1.60 2.20 3.68 4.40 10.00 3.02
12 Total 8 373 1.30 1.80 2.30 2.96 3.20 10.00 1.97

Table 12: ITR by sector

Region Obs. min q1 median mean q3 max sd

1 Africa 80 1.30 1.70 2.30 3.15 3.30 10.00 2.39
2 Developed Asia / Pacific 2 045 1.30 1.80 2.40 2.87 3.10 10.00 1.71
3 Emerging Asia 2 121 1.30 2.00 2.70 3.49 3.80 10.00 2.34
4 Europe 1 455 1.30 1.60 2.00 2.47 2.70 10.00 1.54
5 Latin America 198 1.30 1.80 2.40 3.02 3.18 10.00 1.97
6 North America 2 474 1.30 1.70 2.20 2.85 3.00 10.00 1.95
7 Total 8 373 1.30 1.80 2.30 2.96 3.20 10.00 1.97

Table 13: ITR by region
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G Allocations by strategy
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Sector Obs Market Cap. Weight CIEV IC
1+2 Contrib1+2

Capital weighted strategy
1 Basic materials 1 026 7 227.68 6.51 319.56 20.80
2 Communications 525 9392.19 8.46 5.73 0.48
3 Consumer cyclical 1 325 15199.06 13.69 32.24 4.41
4 Consumer non-cyclical 336 4040.39 3.64 36.30 1.32
5 Energy 264 6 169.46 5.56 258.86 14.39
6 Financial 1 112 18 723.57 16.87 5.65 0.95
7 Healthcare 431 6 866.63 6.19 6.96 0.43
8 Industrial 1 670 13 657.52 12.30 48.67 5.99
9 Real estate 453 2 460.55 2.22 6.35 0.14

10 Technology 948 2 4044.10 21.66 8.52 1.84
11 Utilities 283 3 239.08 2.92 605.74 17.67
12 Total 8373 111 020.23 100.00 68.44 68.44

Best in Universe strategy
1 Basic materials 121 1 424.91 1.92 4.05 0.08
2 Communications 413 7 895.58 10.64 2.25 0.24
3 Consumer cyclical 498 8 936.31 12.04 4.68 0.56
4 Consumer non-cyclical 61 1 662.91 2.24 4.38 0.10
5 Energy 17 117.01 0.16 3.95 0.01
6 Financial 1 082 17 578.48 23.69 0.88 0.21
7 Healthcare 234 5 849.81 7.88 2.37 0.19
8 Industrial 761 7 687.41 10.36 4.12 0.43
9 Real estate 356 2 043.29 2.75 2.86 0.08

10 Technology 585 20 588.12 27.74 1.27 0.35
11 Utilities 58 423.96 0.57 2.77 0.02
12 Total 4186 74 207.79 100.00 2.26 2.26

Best in Class strategy
1 Basic materials 513 4359.22 6.14 33.93 2.08
2 Communications 262 2900.07 4.09 0.54 0.02
3 Consumer cyclical 662 10627.54 14.97 5.88 0.88
4 Consumer non-cyclical 168 3315.94 4.67 11.90 0.56
5 Energy 132 4359.99 6.14 118.33 7.27
6 Financial 556 9539.48 13.44 0.31 0.04
7 Healthcare 215 5710.47 8.04 2.21 0.18
8 Industrial 835 8436.57 11.88 4.74 0.56
9 Real estate 226 1470.07 2.07 1.44 0.03

10 Technology 474 18919.75 26.65 0.79 0.21
11 Utilities 141 1349.25 1.90 42.44 0.81
12 Total 4184 70988.34 100.00 12.64 12.64

Table 14: Allocations and contributions by strategy
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H Resampling tables

mean sd skew. kurt. Q0.25 Q0.5 Q0.75 Min Max

Carbon attribution
Allocation BiU -47.03 20.38 -1.11 1.84 -58.35 -42.80 -32.56 -157.38 -4.20
Allocation BiC -11.85 14.10 -0.58 2.50 -18.78 -10.60 -3.28 -78.00 59.79
Selection BiU -69.48 25.15 -0.87 1.06 -83.55 -65.82 -51.48 -191.70 -17.72
Selection BiC -59.06 22.98 -1.00 1.44 -71.61 -54.76 -42.75 -175.67 -14.09
Interaction BiU 46.68 20.37 1.12 1.86 32.20 42.47 57.98 4.61 157.43
Interaction BiC 11.34 11.92 0.79 3.06 4.24 9.70 16.90 -50.57 70.02

Carbon metrics
Carbon footprint CW 72.20 25.35 0.86 1.04 54.03 68.59 86.42 19.45 195.21
Carbon footprint BiU 2.37 0.83 1.20 2.48 1.89 2.24 2.72 0.41 5.98
Carbon footprint BiC 12.63 9.44 2.16 5.65 6.83 9.38 14.89 1.34 75.22
ITR CW 2.95 0.59 1.33 3.05 2.55 2.84 3.24 1.79 6.51
ITR BiU 1.32 0.06 4.48 22.29 1.30 1.30 1.30 1.30 1.87
ITR BiC 1.64 0.34 1.86 3.90 1.41 1.51 1.72 1.30 3.67
CI∗CW 72.20 25.35 0.86 1.04 54.03 68.59 86.42 19.45 195.21
CI∗BiU 49.41 20.49 1.11 1.85 34.85 45.28 60.62 8.68 160.94
CI∗BiC 24.49 14.06 0.64 1.81 15.44 22.95 31.92 -39.16 88.41
ITR∗

CW 2.95 0.59 1.33 3.05 2.55 2.84 3.24 1.79 6.51
ITR∗

BiU 1.50 0.17 1.40 2.50 1.38 1.46 1.58 1.30 2.49
ITR∗

BiC 1.67 0.33 1.78 3.67 1.45 1.56 1.78 1.30 3.58

Table 15: Resampled carbon metrics
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Figure 11: Density of bootstrapped metrics
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mean sd skew. kurt. Q0.25 Q0.5 Q0.75 Min Max

Cap weighted
CW Communications 7.77 7.84 3.26 11.35 3.79 5.62 8.72 0.60 59.37
CW Consumer cyclical 13.94 7.24 1.44 2.33 8.94 12.14 16.99 2.50 46.71
CW Industrial 13.06 4.28 0.50 0.05 9.85 12.71 15.77 3.22 28.72
CW Energy 5.35 6.08 2.71 7.99 1.92 3.35 5.95 0.26 49.47
CW Technology 19.65 12.84 1.27 0.87 10.63 15.29 24.59 2.46 69.62
CW Basic materials 6.92 3.02 1.02 1.27 4.74 6.41 8.53 1.22 20.40
CW Consumer non-cyclical 3.84 2.54 1.21 1.38 1.93 3.07 5.13 0.31 17.00
CW Utilities 3.11 1.66 1.10 1.57 1.90 2.81 3.97 0.23 11.55
CW Financial 17.65 6.84 0.73 0.48 12.68 16.73 21.68 2.87 47.36
CW Healthcare 6.35 5.00 1.45 2.23 2.57 4.73 8.77 0.38 33.39
CW Real estate 2.37 1.20 1.16 1.81 1.49 2.11 3.01 0.29 9.16

Best in Universe
BiU Communications 9.34 10.29 3.17 10.63 4.03 6.29 10.21 0.56 72.41
BiU Consumer cyclical 12.03 8.90 1.88 4.14 6.08 9.46 15.07 0.85 53.74
BiU Industrial 11.36 5.27 0.74 0.48 7.27 10.68 14.47 1.45 34.37
BiU Energy 0.19 0.42 3.90 16.11 0.00 0.07 0.16 0.00 3.67
BiU Technology 24.21 16.44 1.15 0.39 12.42 18.82 31.08 1.38 80.31
BiU Basic materials 2.41 2.69 2.29 6.98 0.65 1.49 3.07 0.00 24.28
BiU Consumer non-cyclical 2.51 3.08 1.88 3.64 0.44 1.23 3.32 0.00 18.95
BiU Utilities 0.66 0.86 2.48 7.42 0.11 0.34 0.86 0.00 6.50
BiU Financial 25.93 9.93 0.34 -0.39 18.44 25.31 32.52 3.42 55.98
BiU Healthcare 8.23 7.41 1.38 1.71 2.59 5.70 12.06 0.12 43.05
BiU Real estate 3.13 1.86 1.33 2.49 1.78 2.73 4.08 0.26 13.22

Best in Class
BiC Communications 5.38 7.05 4.96 28.87 2.31 3.63 5.75 0.40 66.61
BiC Consumer cyclical 15.08 9.93 1.61 2.86 8.19 12.25 19.03 1.90 59.08
BiC Industrial 12.63 5.66 0.69 0.25 8.32 11.96 16.06 2.05 36.38
BiC Energy 5.18 8.36 3.15 9.89 1.17 2.34 4.75 0.01 58.57
BiC Technology 22.48 16.63 1.25 0.58 10.75 16.62 28.81 1.88 79.54
BiC Basic materials 6.54 4.00 1.50 3.07 3.71 5.58 8.23 0.84 32.33
BiC Consumer non-cyclical 4.94 3.92 1.32 1.68 1.99 3.65 7.05 0.18 24.83
BiC Utilities 2.19 1.63 1.65 4.25 1.01 1.81 2.97 0.05 13.09
BiC Financial 15.15 7.23 0.92 0.90 9.89 14.02 19.27 1.67 48.02
BiC Healthcare 8.21 7.48 1.43 1.93 2.48 5.77 11.98 0.17 42.60
BiC Real estate 2.22 1.48 1.67 4.22 1.18 1.84 2.84 0.20 12.86

Table 16: Resampled allocations by sector
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mean sd skew. kurt. Q0.25 Q0.5 Q0.75 Min Max

Cap weighted
CW Emerging Asia 17.80 6.95 1.40 3.05 13.24 16.75 20.77 5.47 56.29
CW Europe 18.04 6.05 0.49 0.16 13.57 17.55 21.90 3.93 43.48
CW Developed Asia / Pacific 11.44 4.42 1.21 2.58 8.41 10.78 13.73 3.30 39.24
CW North America 50.93 11.38 0.26 -0.51 42.38 49.90 58.72 19.91 82.76
CW Latin America 1.44 1.03 1.46 2.98 0.68 1.17 1.92 0.03 7.63
CW Africa 0.34 0.28 1.51 2.73 0.13 0.25 0.47 0.00 1.69

Best in Universe
BiU Emerging Asia 14.39 6.36 0.77 0.61 9.58 13.47 18.35 2.79 44.84
BiU Europe 19.56 8.41 0.54 -0.07 13.02 18.61 24.96 2.91 50.76
BiU Developed Asia / Pacific 8.11 3.72 0.79 0.67 5.25 7.55 10.28 1.24 25.99
BiU North America 56.69 13.36 0.17 -0.75 46.40 55.46 66.78 21.13 89.62
BiU Latin America 0.99 1.00 2.38 9.49 0.31 0.69 1.31 0.00 10.59
BiU Africa 0.27 0.38 1.90 3.53 0.01 0.09 0.36 0.00 2.33

Best in class
BiC Emerging Asia 13.98 8.75 2.23 6.07 8.68 12.08 16.32 1.90 64.43
BiC Europe 20.73 8.86 0.59 0.06 14.02 19.73 26.40 3.22 57.66
BiC Developed Asia / Pacific 8.19 4.02 0.95 0.92 5.17 7.51 10.41 1.45 25.91
BiC North America 55.70 13.90 0.04 -0.55 45.79 55.16 65.63 15.84 88.01
BiC Latin America 1.31 1.21 1.89 5.01 0.46 0.94 1.76 0.00 10.08
BiC Africa 0.10 0.27 3.79 16.66 0.00 0.00 0.05 0.00 2.91

Emerging Markets
CW Emerging 19.58 7.16 1.24 2.52 14.85 18.71 22.91 5.52 56.88
BiU Emerging 15.65 6.60 0.70 0.50 10.70 14.85 19.73 2.99 46.64
BiC Emerging 15.38 8.88 2.06 5.40 9.97 13.47 18.16 2.29 64.62

Table 17: Resampled allocations by region
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SWstat SWp−value JBstat JBp−value KSstat KSp−value

AllocBiU 0.94 0.00 696.76 0.00 0.08 0.00
AllocBiC 0.96 0.00 630.09 0.00 0.07 0.00
SelecBiU 0.96 0.00 347.62 0.00 0.07 0.00
SelecBiC 0.95 0.00 506.30 0.00 0.08 0.00
InterBiU 0.94 0.00 703.58 0.00 0.08 0.00
InterBiC 0.94 0.00 988.18 0.00 0.08 0.00
CICW 0.96 0.00 335.00 0.00 0.06 0.00
CIBiU 0.93 0.00 991.85 0.00 0.10 0.00
CIBiC 0.77 0.00 4210.95 0.00 0.19 0.00
ITRCW 0.92 0.00 1361.34 0.00 0.08 0.00
ITRBiU 0.36 0.00 48088.62 0.00 0.38 0.00
ITRBiC 0.80 0.00 2422.88 0.00 0.19 0.00
CIstarCW 0.96 0.00 335.00 0.00 0.06 0.00
CIstarBiU 0.94 0.00 694.40 0.00 0.08 0.00
CIstarBiC 0.96 0.00 410.90 0.00 0.07 0.00
ITRstarCW 0.92 0.00 1361.34 0.00 0.08 0.00
ITRstarBiU 0.89 0.00 1173.59 0.00 0.11 0.00
ITRstarBiC 0.82 0.00 2177.67 0.00 0.17 0.00
wCW
Emerging 0.93 0.00 1037.36 0.00 0.08 0.00

wBiU
Emerging 0.97 0.00 182.30 0.00 0.05 0.00

wBiC
Emerging 0.82 0.00 3837.41 0.00 0.13 0.00

∆wBiU,CW
Emerging 0.81 0.00 4527.18 0.00 0.17 0.00

∆wBiC,CW
Emerging 0.96 0.00 797.00 0.00 0.07 0.00

∆wBiU,CW
Utilities 0.94 0.00 612.92 0.00 0.08 0.00

∆wBiC,CW
Utilities 0.94 0.00 1524.74 0.00 0.08 0.00

∆wBiU,BiC
Emerging 0.77 0.00 5564.38 0.00 0.21 0.00

∆wBiU,BiC
Utilities 0.85 0.00 3650.28 0.00 0.12 0.00

Table 18: Normality test on resampled variables
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